Муниципальное бюджетное общеобразовательное учреждение Ужовская средняя школа

Согласовано с ШМО естественно-научного цикла (протокол №1 от 24.08.2018)

Утверждено приказом директора школы Приказ №259 от 25.08.2018

РАБОЧАЯ ПРОГРАММА

Геометрия 8 класс

Составители:

Юрасова Е.И. учитель математики, Белова Л.В. учитель математики, Голубева Н.В. учитель математики, Носов В.П. учитель математики.

п. Ужовка 2018 год Рабочая программа по геометрии в 8 классе разработана в соответствии с рабочей программой «Математика. Программы.5-11 классы, А.Г.Мерзляк, В.Б.Полонский, М.С.Якир и др., М.: Вента-Граф, 2018 год» по курсу геометрии 7-9 классы созданной на основе единой концепции преподавания математики в средней школе, разработанной авторами учебников, включенных в систему «Алгоритм успеха». Программа соответствует учебнику «Геометрия» для 8 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир –М.: Вента-Граф, 2018 год.

Изучение геометрии в 8 классе направлено на достижение следующих целей:

Развитие:

- логического мышления;
- творческой активности учащихся;
- интереса к предмету; логического мышления;
- активизация поисково-познавательной деятельности;
- развитие математической культуры;
- формирование и закрепление понятий доказательства.

Воспитание средствами геометрии культуры личности, отношения к математике как части общечеловеческой культуры.

Подготовка к осуществлению осознанного выбора индивидуальной образовательной траектории. **Задачи программы:**

- систематическое изучение свойств многоугольников;
- формирование умения применять полученные значения для решения практических задач, проводить доказательства;
- формирование умения логически обосновывать выводы

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программа рассчитана на 68 часов, 2 часа в неделю.

Планируемые результаты учебного предмета.

Изучение геометрии способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного образования.

Личностные результаты:

1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознание вкладаютечественных учёных в развитие мировой науки;

- 2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде:
- 4) умение контролировать процесс и результат учебной и математической деятельности;
- 5) критичность мышления, инициатива, находчивость, активность при решении геометрических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 3) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- 4) умение устанавливать причинно-следственные связи, проводить доказательное рассуждение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;
- 6) компетентность в области использования информационно-коммуникационных технологий;
- 7) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 8) умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 9) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- 10) умение понимать и использовать математические средства наглядности (чертежи, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 11) умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки;
- 12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1) осознание значения геометрии в повседневной жизни человека;
- 2) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
- 4) владение базовым понятийным аппаратом по основным разделам содержания;
- 5) систематические знания о фигурах и их свойствах;
- 6) практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:
 - изображать фигуры на плоскости;
 - использовать геометрический язык для описания предметов окружающего мира;
 - измерять длины отрезков, величины углов, вычислять

площади фигур;

- распознавать и изображать равные, симметричные и подобные фигуры;
- выполнять построения геометрических фигур с помощью циркуля и линейки;
- читать и использовать информацию, представленную на чертежах, схемах;
- проводить практические расчёты.

Предлагаемый курс позволяет обеспечить формирование, как **предметных** умений, так и **универсальных учебных действий** школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Личностными результатами изучения предмета «Геометрия» является формирование следующих умений и качеств:

- способность к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- представление о математической науке как о сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- креативность мышления, инициатива, находчивость, активность при решении математических задач:
- умение контролировать процесс и результат учебной математической деятельности;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

- система заданий учебников;
- представленная в учебниках в явном виде организация материала по принципу минимакса; использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Геометрия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- сличать способ и результат своих действий с заданным алгоритмом, обнаруживать отклонения и отличия от него;
- проектировать маршрут преодоления затруднений в обучении через включение в новые виды деятельности и формы сотрудничества;
- выделять и осознавать то, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
- оценивать достигнутый результат;
- принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

• умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Познавательные УУД:

- строить логические цепи рассуждений;
- сравнивать различные объекты: выделять из множества один или несколько объектов, имеющих общие свойства;
- сопоставлять характеристики объектов по одному или нескольким признакам; выявлять сходства и различия объектов;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- устанавливать причинно-следственные связи;
- выделять и формулировать проблему;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- давать определение понятиям;
- умение находить в различных источниках информацию, необходимую для решения математических проблем;
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- интересоваться чужим мнением и высказывать свое;
- представлять информацию в понятной форме;
- устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- в дискуссии уметь выдвинуть контраргументы;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- уметь брать на себя инициативу в организации совместного действия.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование личностно-ориентированного и системно - деятельностного обучения.

В результате изучения курса геометрии 8 класса ученик должен уметь:

- распознавать геометрические фигуры, различать их взаимное расположение;
- выполнять чертежи по условиям задач;
- -изображать геометрические фигуры; осуществлять преобразования фигур;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения,

- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычислений площадей фигур при решении практических задач.

Тематическое планирование с определением основных видов учебной деятельности.

1. Четырёхугольники (22 ч).

что такое четырёхугольник. Описывать элементы четырёхугольника. Распознавать выпуклые и невыпуклые четырёхугольники. Изображать и находить на рисунках четырёх угольники разных видов и их элементы. Формулировать: определения: параллелограмма, высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного И описанного четырёхугольника; свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольников; признаки: параллелограмма, прямоугольника, ромба, четырёхугольников. Доказывать: описанного теоремы четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольников. Применять изученные определения, свойства и признаки к решению задач.

2. Подобие треугольников. (16 ч.)

Формулировать: определение подобных треугольников; свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Доказывать: теоремы: Фалеса, о пропорциональных отрезках, о свойствах медиан треугольника, биссектрисы треугольника; свойства: пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Применять изученные определения, свойства и признаки к решению задач.

3. Решение прямоугольных треугольников. (14 ч.)

Формулировать: определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника; свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике. Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла. Решать прямоугольные треугольники.

Доказывать: теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора; формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла. Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°. Применять изученные определения, теоремы и формулы к решению задач.

4. Многоугольники. Площадь многоугольника. (10 ч.)

Пояснять, что такое площадь многоугольника. Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники. Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности. Формулировать: определения: вписанного и описанного многоугольников, площади многоугольника, равновеликих многоугольников; основные свойства площади многоугольника. Доказывать: теоремы о сумме углов выпуклого п-угольника, площади прямоугольника, площади треугольника, площади трапеции. Применять изученные определения, теоремы и формулы к решению задач.

5. Повторение и систематизация учебного материала. (6 ч.)

Упражнения для повторения курса 8 класса. Основная цель-обобщение и систематизация изученного материала, отработка основных навыков и умений.

Тематическое планирование.

№	Название раздела	Кол-во часов
1	Четырехугольники	22
2	Подобие треугольников	16
3	Решение прямоугольных треугольников	14
4	Многоугольники. Площадь многоугольника.	10
5	Повторение и систематизация учебного	6
	материала.	

Муниципальное бюджетное общеобразовательное учреждение Ужовская средняя школа

Согласовано с ШМО естественно-математического цикла (протокол №5 от 27.05.2016)

Утверждено приказом директора школы Приказ №205 от 30.05.2016

РАБОЧАЯ ПРОГРАММА

Геометрия

7 класс

Составители:

Юрасова Е.И. учитель,

Белова Л.В. учитель,

Голубева Н.В. учитель.

п. Ужовка

2016 год

Рабочая программа составлена с учётом программы основного общего образования по математике (Программа.. Математика. 5 -9класс / [авт.-сост А.Г.Мерзляк,В.Б.Полонский] — 2-е изд.,дораб. —«Вентана-Граф», 2013г.).,федерального компонента государственных образовательных стандартов основного общего образования ,учебник «Геометрия » для 8 классов образовательных учреждений. А.Г.Мерзляк, В.Б.Полонский М.С.Якир . Е.В.Буцко—«Вентана-Граф», 2014г

Базисный учебный (образовательный план) на изучение геометрии в 8 классе основной школе отводит 2 учебных часа в неделю в течение 34 недель обучения, всего 68уроков.

Геометрия — один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Программа направлена на достижение следующих целей:

овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Одной из основных целей изучения геометрии является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения геометрии формируются логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение геометрии даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения геометрии школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития геометрии как науки формирует у учащихся представления о геометрии как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, доказательство, обобщение и систематизацию.

Особо акцентируются понятий, содержательное раскрытие математических толкование сущности математических методов области ИХ применения, возможностей применения теоретических демонстрация знаний ДЛЯ разнообразных задач прикладного характера. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Общая характеристика курса геометрии в 8 классе

Содержание курса геометрии в 8 классе представлено в виде следующих содержательных разделов: «Геометрические фигуры», «Измерение геометрических величин», «Геометрия в историческом развитии».

Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у учащихся знаний о геометрической фигуре как важнейшей математической модели для описания реального мира. Глав-ная цель данного раздела — развить у учащихся воображение и логическое мышление путём систематического изучения свойств геометрических фигур И применения ЭТИХ свойств при решении вычислительного и конструк-тивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности с формальнологическим подходом является неотъемлемой частью геометрических знаний.

Содержание раздела «*Измерение геометрических величин*» расширяет и углубляет представления учащихся об измерениях длин, углов и площадей фигур, способствует формированию практических навыков, необходимых как при решении геометрических задач, так и в повседневной жизни.

Раздел «*Геометрия в историческом развитии*», содержание которого фрагментарно внедрено в изложение нового материала как сведения об авторах изучаемых фактов и теорем, истории их открытия, предназначен для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Планируемые результаты учебного курса

Личностные результаты:

- 1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- 2) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 3) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования

уважительного отношения к труду, развитие опыта участия в социально значимом труде;

- 4) умение контролировать процесс и результат учебной и математической деятельности;
- 5) критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение соотносить свои действия с планируемыми результатами,

осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

3) умение определять понятия, создавать обобщения, устанавливать

аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

- 4) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- 5) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;
- 6) компетентность в области использования информационно-коммуникационных технологий;

- 7) первоначальные представления об идеях и о методах математики как об универсальном языке науки и технике, о средстве моделирования явлений и процессов;
- 8) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 9) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- 10) умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.
- 11) умение выдвигать гипотезы при решении задачи понимать необходимость их проверки;
- 12) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

- 1) осознание значения геометрии для повседневной жизни человека;
- 2) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 3) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
- 4) владение базовым понятийным аппаратом по основным разделам содержания;
- 5) систематические знания о фигурах и их свойствах;
- 6) практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:
- изображать фигуры на плоскости;
- использовать геометрический язык для описания предметов окружающего мира;
- измерять длины отрезков, величины углов, вычислять площади фигур;
- распознавать и изображать равные;
- выполнять построения геометрических фигур с помощью циркуля и линейки;
- читать и использовать информацию, представленную на чертежах, схемах;
- проводить практические расчёты.

Базисный учебный (образовательный) план на изучение геометрии в 8 классе основной школы отводит 2 учебных часа в неделю в течение года обучения, всего 68 часов.

Содержание курса геометрии 8 класса

Многоугольники

Треугольники. Виды треугольников. Медиана, биссектриса, высота, средняя линия треугольника. Признаки равенства треугольников. Свойства и признаки равнобедренного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольников. Точки пересечения медиан, биссектрис, высот треугольника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метрические соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и признаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапеции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Измерение геометрических величин

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигуры. Нахождение площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции.

Тематическое планирование.

Тема	
Повторение курса 7 класса (3ч)	
Четырёхугольники (23ч)	
Подобие треугольников (12ч)	
Решение прямоугольных треугольников(15ч)	
Многоугольники. Площадь многоугольника(12ч)	
Повторение курса 8 класса (3ч)	

Рабочая программа по геометрии в 8 классе разработана в соответствии с рабочей программой «Математика. Программы.5-11 классы, А.Г.Мерзляк, В.Б.Полонский, М.С.Якир и др., М.: Вента-Граф, 2018 год» по курсу геометрии 7-9 классы созданной на основе единой концепции преподавания математики в средней школе, разработанной авторами учебников, включенных в систему «Алгоритм успеха». Программа соответствует учебнику «Геометрия» для 8 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир –М.: Вента-Граф, 2018 год.

Изучение геометрии в 8 классе направлено на достижение следующих целей:

Развитие:

- логического мышления;
- творческой активности учащихся;
- интереса к предмету; логического мышления;
- активизация поисково-познавательной деятельности;
- развитие математической культуры;
- формирование и закрепление понятий доказательства.

Воспитание средствами геометрии культуры личности, отношения к математике как части общечеловеческой культуры.

Подготовка к осуществлению осознанного выбора индивидуальной образовательной траектории.

Задачи программы:

- систематическое изучение свойств многоугольников;
- формирование умения применять полученные значения для решения практических задач, проводить доказательства;
- формирование умения логически обосновывать выводы

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программа рассчитана на 68 часов, 2 часа в неделю.

Планируемые результаты изучения учебного предмета.

Предлагаемый курс позволяет обеспечить формирование, как **предметных** умений, так и **универсальных учебных действий** школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Личностными результатами изучения предмета «Геометрия» является формирование следующих умений и качеств:

- способность к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- представление о математической науке как о сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- креативность мышления, инициатива, находчивость, активность при решении математических задач:
- умение контролировать процесс и результат учебной математической деятельности;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

- система заданий учебников;
- представленная в учебниках в явном виде организация материала по принципу минимакса; использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Геометрия» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- сличать способ и результат своих действий с заданным алгоритмом, обнаруживать отклонения и отличия от него;
- проектировать маршрут преодоления затруднений в обучении через включение в новые виды деятельности и формы сотрудничества;
- выделять и осознавать то, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
- оценивать достигнутый результат;
- принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Познавательные УУД:

• строить логические цепи рассуждений;

- сравнивать различные объекты: выделять из множества один или несколько объектов, имеющих общие свойства;
- сопоставлять характеристики объектов по одному или нескольким признакам; выявлять сходства и различия объектов;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- устанавливать причинно-следственные связи;
- выделять и формулировать проблему;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- давать определение понятиям;
- умение находить в различных источниках информацию, необходимую для решения математических проблем;
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- интересоваться чужим мнением и высказывать свое;
- представлять информацию в понятной форме;
- устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- в дискуссии уметь выдвинуть контраргументы;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- уметь брать на себя инициативу в организации совместного действия.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование личностно-ориентированного и системно - деятельностного обучения.

Тематическое планирование с определением основных видов учебной деятельности.

1. Четырёхугольники (22 ч).

Пояснять, что такое четырёхугольник. Описывать четырёхугольника. элементы Распознавать выпуклые и невыпуклые четырёхугольники. Изображать и находить на рисунках четырёхугольники разных видов и их элементы. Формулировать: определения: параллелограмма, высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного И описанного четырёхугольника; свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольников; признаки: параллелограмма, прямоугольника, ромба, описанного четырёхугольников. Доказывать: теоремы четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольников. Применять изученные определения, свойства и признаки к решению задач.

2. Подобие треугольников. (16 ч.)

Формулировать: определение подобных треугольников; свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Доказывать: теоремы: Фалеса, о пропорциональных отрезках, о свойствах медиан треугольника, биссектрисы треугольника; свойства: пересекающихся хорд, касательной и секущей; признаки подобия треугольников. Применять изученные определения, свойства и признаки к решению задач.

3. Решение прямоугольных треугольников. (14 ч.)

Формулировать: определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника; свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике. Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла. Решать прямоугольные треугольники.

Доказывать: теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора; формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла. Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°. Применять изученные определения, теоремы и формулы к решению задач.

4. Многоугольники. Площадь многоугольника. (10 ч.)

Пояснять, что такое площадь многоугольника. Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники. Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности. Формулировать: определения: вписанного и описанного многоугольников, площади многоугольника, равновеликих многоугольников; основные свойства площади многоугольника. Доказывать: теоремы о сумме углов выпуклого п-угольника, площади прямоугольника, площади треугольника, площади трапеции. Применять изученные определения, теоремы и формулы к решению задач.

5. Повторение и систематизация учебного материала. (6 ч.)

Упражнения для повторения курса 8 класса. Основная цель-обобщение и систематизация изученного материала, отработка основных навыков и умений.

Тематическое планирование.

№	Название раздела	Кол-во часов
1	Четырехугольники	22
2	Подобие треугольников	16
3	Решение прямоугольных треугольников	14
4	Многоугольники. Площадь многоугольника.	10
5	Повторение и систематизация учебного материала.	6